Knowledge Graph Self-Supervised Rationalization for Recommendation

Yuhao Yang University of Hong Kong yuhao-yang@outlook.com

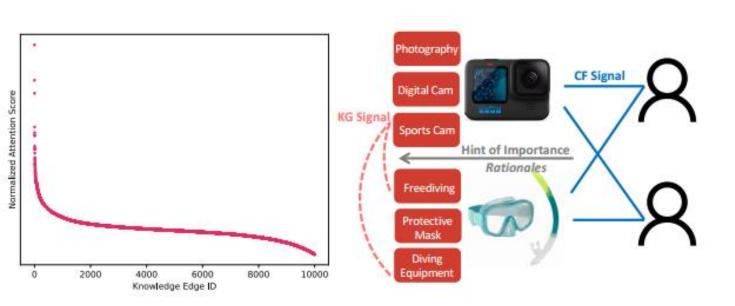
Lianghao Xia University of Hong Kong aka_xia@foxmail.com Chao Huang* University of Hong Kong chaohuang75@gmail.com

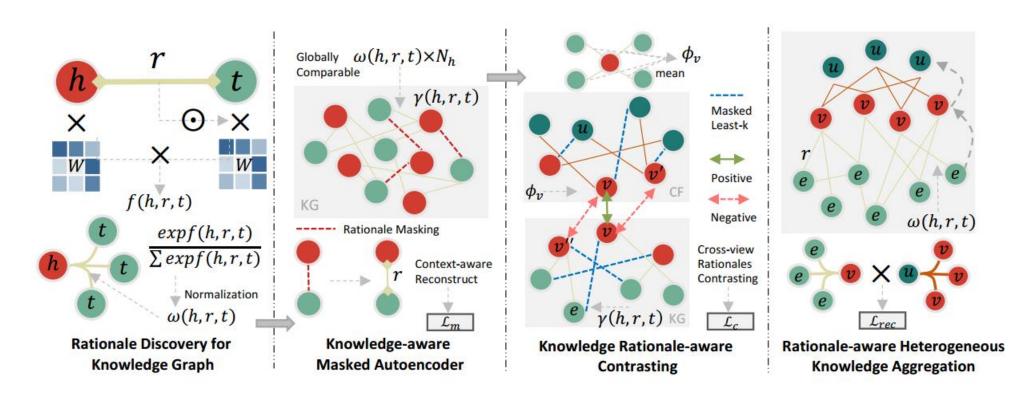
Chunzhen Huang Wechat, Tencent chunzhuang@tencent.com

https://github.com/HKUDS/KGRec.

(KDD-2023)

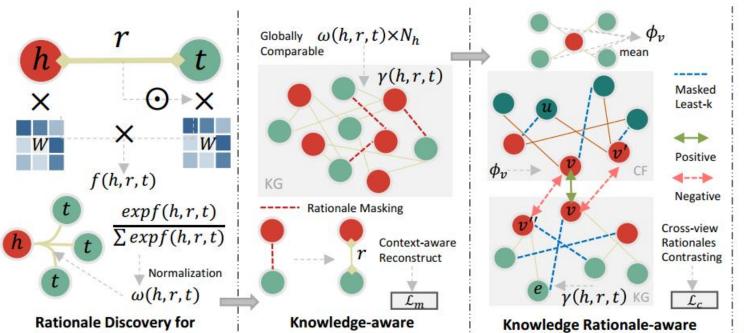
- 1. Introduction
- 2. Approach
- 3. Experiments



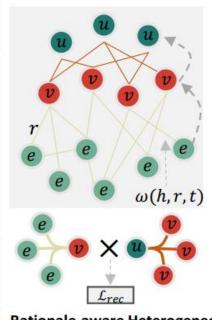


Introduction

adopt either simple random augmentation or intuitive cross-view information, failing to consider the important latent rationales between the KG and recommendation task



a binary graph
$$G_u = (u, y_{uv}, v)$$


$$G_k = (h, r, t). h, t \in \mathcal{E}$$

Approach

Masked Autoencoder

Rationale-aware Heterogeneous Knowledge Aggregation

Rational Discovery for KG

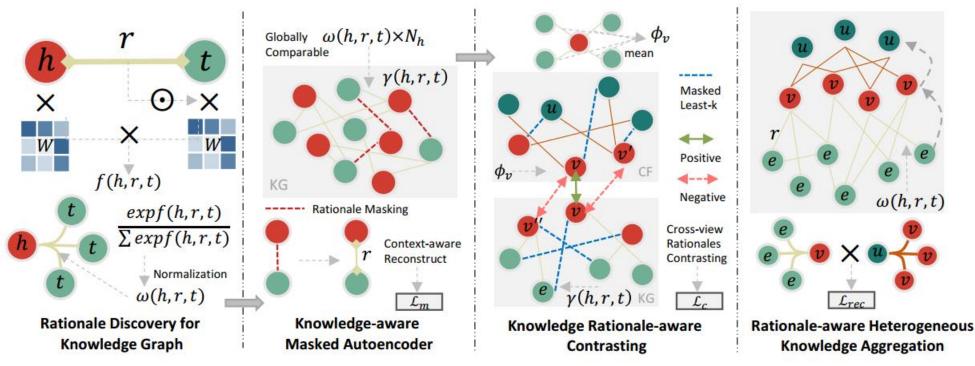
Knowledge Graph

$$f(h, r, t) = \frac{\mathbf{e}_h \mathbf{W}^Q \cdot \left(\mathbf{e}_t \mathbf{W}^K \odot \mathbf{e}_r\right)^\mathsf{T}}{\sqrt{d}},\tag{1}$$

$$\omega(h, r, t) = \frac{\exp(f(h, r, t))}{\sum_{(h, r', t') \in \mathcal{N}_h} \exp(f(h, r', t'))}.$$
 (2)

Knowledge Aggregation

Contrasting


$$\mathbf{e}_{h}^{(l)} = \frac{1}{|\mathcal{N}_{h}|} \sum_{(h,r,t) \in \mathcal{N}_{h}} \omega(h,r,t) \mathbf{e}_{r} \odot \mathbf{e}_{t}^{(l-1)}, \tag{3}$$

$$\mathbf{e}_{u}^{(l)} = \frac{1}{|\mathcal{N}_{u}|} \sum_{i \in \mathcal{N}_{u}} \mathbf{e}_{v}^{(l-1)},$$
 (4)

$$\mathbf{e}_{h} = f_{k}(\mathcal{G}_{k}; h) = \sum_{l}^{L} \mathbf{e}_{h}^{(l)}; \ \mathbf{e}_{u} = f_{u}(\mathcal{G}_{u}; u) = \sum_{l}^{L} \mathbf{e}_{u}^{(l)},$$
 (5)

Approach

Knowledge-aware Masked Autoencoder

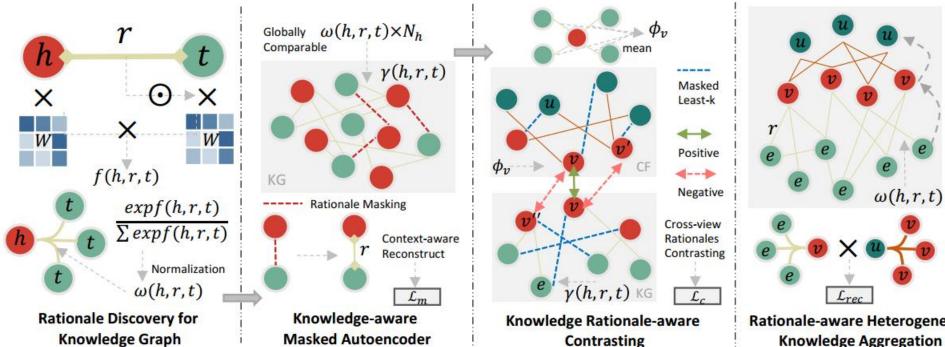
$$\gamma(h,r,t) = |\mathcal{N}_h| \cdot \omega(h,r,t) = \frac{|\mathcal{N}_h| \cdot \exp(f(h,r,t))}{\sum_{(h,r',t') \in \mathcal{N}_h} \exp(f(h,r',t'))}. \quad (6)$$

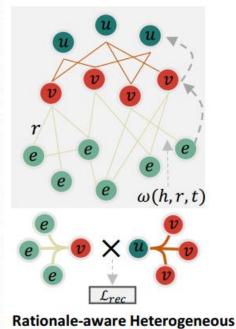
$$\gamma(h, r, t) = \gamma(h, r, t) - \log(-\log(\epsilon)); \quad \epsilon \sim \text{Uniform } (0, 1), \quad (7)$$

$$\mathcal{M}_k = \{ (h, r, t) | \gamma(h, r, t) \in \text{topk}(\Gamma; k_m) \}, \tag{8}$$

$$\mathbf{e}_h = f_k(\mathcal{G}_k^m; h); \ \mathbf{e}_t = f_k(\mathcal{G}_k^m; t), \tag{9}$$

$$\mathcal{L}_{m} = \sum_{(h,r,t)\in\mathcal{M}_{k}} -\log\left(\sigma\left(\mathbf{e}_{h}^{\mathsf{T}}\cdot\left(\mathbf{e}_{t}\odot\mathbf{e}_{r}\right)\right)\right). \tag{10}$$


Knowledge Rationale-aware Contrasting


$$S_k = \{(h, r, t) | \gamma(h, r, t) \in \text{topk}(-\Gamma; \rho_k) \}; \ \mathcal{G}_k^c = \mathcal{G}_k \setminus S_k, \quad (11)$$

$$\phi_v = \operatorname{mean}(\{\gamma(h, r, t) | h = v \lor t = v\}). \tag{12}$$

$$\phi_v' = \frac{\exp \phi_v}{\sum_v \exp \phi_v}; \ S_u \sim \text{multinomialNR}(\Phi'; \rho_u),$$
 (13)

Approach

$$\mathbf{x}_{u}^{(l)} = \sum_{v \in \mathcal{N}_{u}} \frac{\mathbf{x}_{v}^{(l-1)}}{\sqrt{|\mathcal{N}_{u}||\mathcal{N}_{v}|}}; \ \mathbf{x}_{v}^{(l)} = \sum_{u \in \mathcal{N}_{v}} \frac{\mathbf{x}_{u}^{(l-1)}}{\sqrt{|\mathcal{N}_{u}||\mathcal{N}_{v}|}}.$$
 (14)

$$\mathbf{x}_{v}^{k} = f_{k}(\mathcal{G}_{k}^{c}; v). \tag{15}$$

$$\mathbf{z}_{v}^{*} = \sigma \left(\mathbf{x}_{v}^{*\mathsf{T}} \mathbf{W}_{1}^{*} + \mathbf{b}_{1}^{*} \right)^{\mathsf{T}} \mathbf{W}_{2}^{*} + \mathbf{b}_{2}^{*}, \tag{16}$$

$$\mathcal{L}_{c} = \sum_{v \in \mathcal{V}} -\log \frac{\exp(s(\mathbf{z}_{v}^{u}, \mathbf{z}_{v}^{k})/\tau)}{\sum_{j \in \{v, v', v''\}} (\exp(s(\mathbf{z}_{v}^{u}, \mathbf{z}_{v}^{k})/\tau) + \exp(s(\mathbf{z}_{j}^{u}, \mathbf{z}_{v}^{k})/\tau))},$$
(17)

$$\mathcal{L}_{rec} = \sum_{(u,v,j)\in\mathcal{D}} -\log\sigma\left(\hat{y}_{uv} - \hat{y}_{uj}\right),\tag{18}$$

$$\mathcal{L} = \mathcal{L}_{rec} + \lambda_1 \mathcal{L}_m + \lambda_2 \mathcal{L}_c, \tag{19}$$

Experiment

Table 1: Statistics of Three Evaluation Datasets.

Statistics	Last-FM	MIND	Alibaba-iFashion
# Users	23,566	100,000	114,737
# Items	48,123	30,577	30,040
# Interactions	3,034,796	2,975,319	1,781,093
# Density	2.7e-3	9.7e-4	5.2e-4
Knowledge Graph			
# Entities	58,266	24,733	59,156
# Relations	9	512	51
# Triplets	464,567	148,568	279,155

Model	Last	-FM	MII	MIND		Alibaba-iFashion	
	Recall	NDCG	Recall	NDCG	Recall	NDCG	
BPR	0.0690	0.0585	0.0384	0.0253	0.0822	0.0501	
NeuMF	0.0699	0.0615	0.0308	0.0237	0.0506	0.0276	
GC-MC	0.0709	0.0631	0.0386	0.0261	0.0845	0.0502	
LightGCN	0.0738	0.0647	0.0419	0.0253	0.1058	0.0652	
SGL	0.0879	0.0775	0.0429	0.0275	0.1141	0.0713	
CKE	0.0845	0.0718	0.0387	0.0247	0.0835	0.0512	
KTUP	0.0865	0.0671	0.0362	0.0302	0.0976	0.0634	
KGNN-LS	0.0881	0.0690	0.0395	0.0302	0.0983	0.0633	
KGCN	0.0879	0.0694	0.0396	0.0302	0.0983	0.0633	
KGAT	0.0870	0.0743	0.0340	0.0287	0.0957	0.0577	
KGIN	0.0900	0.0779	0.0357	0.0225	0.1144	0.0723	
MCCLK	0.0671	0.0603	0.0327	0.0194	0.1089	0.0707	
KGCL	0.0905	0.0769	0.0399	0.0247	0.1146	0.0719	
KGRec	0.0943	0.0810	0.0439	0.0319	0.1188	0.0743	

Experiment

Table 3: Ablation results of KGRec with different variants. The superscript * denotes the largest change in performance.

Ablation Settings	Last-FM		MIND		Alibaba-iFashion	
	Recall	NDCG	Recall	NDCG	Recall	NDCG
KGRec	0.0943	0.0810	0.0439	0.0319	0.1188	0.0743
w/o MAE	0.0918*	0.0792*	0.0374*	0.0238*	0.1178*	0.0737*
w/o Rationale-M	0.0929	0.0805	0.0423	0.0311	0.1183	0.0739
w/o CL	0.0926	0.0796	0.0425	0.0313	0.1180	0.0734
w/o Rationale-Aug	0.0931	0.0801	0.0405	0.0278	0.1185	0.0741

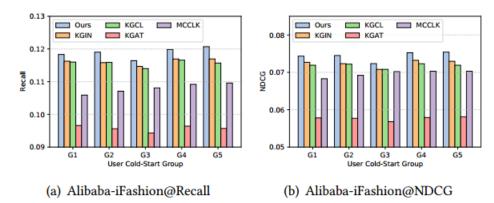


Figure 3: Evaluation results on different user groups. Lower group number implies stronger cold-start effect.

Figure 4: Evaluation results on different item sparsity levels.

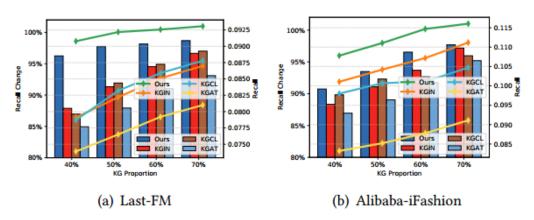


Figure 5: Evaluation results on different KG proportions.

Experiment

Table 4: KG Relations with highest average global rationale scores for news categories learned on MIND dataset.

Category	Relation (Wiki ID)	Avg. Score
sports	member of sports team (P54)	1.235
	league of (P118)	1.117
newspolitics	member of political party (P102)	1.341
	position held (P39)	1.097
travel	part of (P361)	1.105
	located in (P131)	1.190
finance	owned of (P1830)	1.203
	stock exchange (P414)	1.157
tv-celebrity	award received (P166)	1.084
	cast member (P161)	1.139

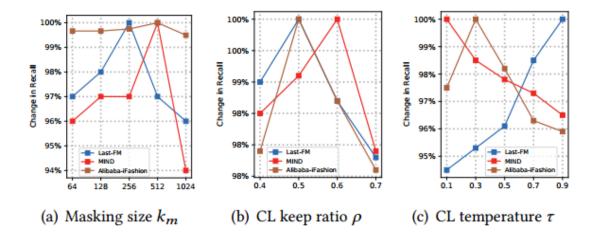


Figure 6: Hyperparameter Study of KGRec.

Thank you!